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Bird’s eye view

• Part#1: Introduction – types of fraud

• Part#2: Graphs Mining – patterns and tools

• Part#3: Visualization - conclusions
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Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static graphs – un-supervised
• 3. Static graphs – semi-supervised
• 4. Time evolving graphs
• 5. Visualization - practitioner’s guide
• 6. Conclusions

ICDM 2023 Faloutsos, Fidalgo, Cazzolato 3



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• 3. Static graphs – semi-supervised
• …
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‘Recipe’ Structure:
• Problem definition

• Short answer/solution

• LONG answer – details

• Conclusion/short-answer
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS (SVD)

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. (PPR)
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SVD properties
(Singular Value Decomposition)
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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Matrix?        
  SVD

!



Bird’s eye view

• 1. Introduction – Motivation
• 2. Static Graphs – un-supervised

–  node importance
• PageRank and Personalized PR
• HITS
• SVD

– …
• …
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PageRank

•Brin, Sergey and Lawrence Page (1998). Anatomy of 
a Large-Scale Hypertextual Web Search Engine. 7th 
Intl World Wide Web Conf.
•Page, Brin, Motwani, and Winograd (1999). The 
PageRank citation ranking: Bringing order to the web. 
Technical Report



Problem: PageRank

Given a directed graph, find its most 
interesting/central node
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A node is important,
if its parents are important
(recursive, but OK!)



Problem: PageRank -  solution

Given a directed graph, find its most 
interesting/central node

Proposed solution: Random walk; spot most 
‘popular’ node (-> steady state prob. (ssp))
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A node high ssp,
if its parents have high ssp
(recursive, but OK!)
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(Simplified) PageRank algorithm

• Let A be the adjacency matrix;
•  let B be the transition matrix: transpose, column-normalized - then
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(Simplified) PageRank algorithm
• B p = p
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Definitions

A  Adjacency matrix (from-to)
D  Degree matrix = (diag ( d1, d2, …, dn) )
B  Transition matrix: to-from, column 

normalized
   B = AT D-1

DETAILS
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(Simplified) PageRank algorithm
• B p = 1 * p
• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized)

• Why does such a p exist? 
– p exists if B is nxn, nonnegative, irreducible 

[Perron–Frobenius theorem]

DETAILS
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 
jumps

Why? To make the matrix irreducible
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(Simplified) PageRank algorithm
• In short: imagine a particle randomly 

moving along the edges
• compute its steady-state probabilities (ssp)

PageRank = PR 
= Random Walk with Restarts = RWR
= Random surfer
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1  1

DETAILS
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Full Algorithm
• With probability 1-c, fly-out to a random 

node
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1  1 2
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DETAILS
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Notice:
• pageRank ~ in-degree
• (and HITS, also: ~ in-degree)



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• 3. Static Graphs – semi-supervised
• …
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?

• Q2: How close is node ‘A’ to node ‘B’?
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Personalized P.R.

• Taher H. Haveliwala. 2002. Topic-sensitive 
PageRank. (WWW '02). 517-526. 
http://dx.doi.org/10.1145/511446.511513 
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http://dx.doi.org/10.1145/511446.511513
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• (or: if I like page/node ‘2’, what else would 

you recommend?)

1 2 3

4
5

High score (A -> B) if
• Many
• Short
• Heavy
paths A->B
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Extension: Personalized P.R.
• With probability 1-c, fly-out to a random 

node(s)
• Then, we have

p = c B p + (1-c)/n 1 =>
p = (1-c)/n [I - c B] -1  1 2

664
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’

1 2 3

4
5
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Extension: Personalized P.R.
• How close is ‘4’ to ‘2’?
• A: compute Personalized P.R. of ‘4’, 

restarting from ‘2’ – Related to
– ‘escape’ probability
– ‘round trip’ probability
– …



Applications of node proximity
• Recommendation
• Link prediction
• ‘Center Piece Subgraphs’
• …
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Fast Algorithms for Querying and Mining Large Graphs
Hanghang Tong, PhD dissertation, CMU, 2009. TR: CMU-
ML-09-112.

http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-112.pdf


Bird’s eye view

• 1. Introduction – Motivation
• 2. Static Graphs – un-supervised

– node importance
• PageRank and Personalized PR
• HITS
• SVD (Singular Value Decomposition)

– Community detection
– …
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Kleinberg’s algo (HITS)

Kleinberg, Jon (1998). Authoritative sources 
in a hyperlinked environment. Proc. 9th 
ACM-SIAM Symposium on Discrete 
Algorithms.



Recall: problem dfn

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
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Why not just PageRank?
1. HITS differentiate between “hubs” and 

“authorities”
2. HITS can help to find the largest community
3. (SVD: powerful tool; extensible to 3-modes)
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fans

idols



Problem: PageRank

Given a directed graph, find its most 
interesting/central node
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A node is important,
if its parents are important
(recursive, but OK!)

From PR
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Problem: PageRank

Given a directed graph, find its most 
interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

HITS

``wise’’

AND: A node is ``wise’’ 
if its children are important
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Kleinberg’s algorithm
• Step 0: find nodes with query word(s)
• Step 1: expand by one move forward and 

backward
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Kleinberg’s algorithm
• on the resulting graph, give high score (= 

‘authorities’) to nodes that many ``wise’’ 
nodes point to

• give high wisdom score (‘hubs’) to nodes 
that point to good ‘authorities’

hubs authorities
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Kleinberg’s algorithm
Then:

ai = hk + hl + hm
that is
ai = Sum (hj)     over all j that 

(j,i) edge exists
or
a = AT h

k
l
m

i

=
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Kleinberg’s algorithm
symmetrically, for the ‘hubness’:

hi = an + ap + aq
that is
hi = Sum (qj)     over all j that 

(i,j) edge exists
or
h = A a

p

n

q

i

=
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
h = A a
a = AT h

=
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Kleinberg’s algorithm
In conclusion, we want vectors h and a such 

that:
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Kleinberg’s algorithm
In short, the solutions to

h = A a
a = AT h

are the left- and right- singular-vectors of the 
adjacency matrix A.

Starting from random a’ and iterating, we’ll 
eventually converge

 … to the vector of strongest singular value.

Dfn: in 
+4
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Kleinberg’s algorithm - results
Eg., for the query ‘java’:
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com (“the java 

developer”)
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BREAK for questions



Bird’s eye view

• 1. Introduction – Motivation
• 2. Static Graphs – un-supervised

– node importance
• PageRank and Personalized PR
• HITS
• SVD (Singular Value Decomposition)
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SVD properties
• Hidden/latent variable detection
• Compute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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h = A a
a = AT h

Dfn: in 
+4



Crush intro to SVD
• (SVD) matrix factorization: finds blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

A) Even if shuffled!



Crush intro to SVD
• (SVD) matrix factorization: finds blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

B) Even if ‘salt+pepper’ noise



Crush intro to SVD
• Basis for anomaly detection – see later
• Basis for tensor/PARAFAC – see later

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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SVD properties
üHidden/latent variable detection
• Compute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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Authority 
scores

HITS: first singular vector, ie, fixates 
on largest group

ICDM 2023

h = A a
a = AT h

Dfn: in 
+4



SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
• Block detection
• Dimensionality reduction
• Embedding
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Crush intro to SVD
• (SVD) matrix factorization: finds blocks

N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
• Dimensionality reduction
• Embedding
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SVD - intuition
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction / projection
• Embedding
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Crush intro to SVD
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scores

• SVD compression is a linear autoencoder

N 
fans

M idols

row 𝑖 (M dim)

reconstructed row 𝑖

…

…

Independent Component Analysis,Aapo Hyvarinen, Erkki Oja, and
Juha Karhunen (Wiley, 2001) – sec 6.2.4, p. 136.

u0 u1

v0 v1M



SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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Node importance - Motivation:

• Given a graph (eg., web pages containing 
the desirable query word)

• Q1: Which node is the most important?
– PageRank (PR = RWR), HITS

• Q2: How close is node ‘A’ to node ‘B’?
– Personalized P.R. 
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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SVD properties
üHidden/latent variable detection
üCompute node importance (HITS)
üBlock detection
üDimensionality reduction
üEmbedding (linear)

– SVD is a special case of ’deep neural net’
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Matrix?        
  SVD

!



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• 3. Static Graphs – semi-supervised
• …
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Problem

• Given a graph, and k
• Break it into k (disjoint) communities
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Short answer

• METIS [Karypis, Kumar]

ICDM 2023 Faloutsos, Fidalgo, Cazzolato 77



ICDM 2023 Faloutsos, Fidalgo, Cazzolato 78

Solution#1: METIS

• Arguably, the best algorithm
• Main idea: 

– coarsen the graph; 
– partition; 
– un-coarsen



CMU SCS
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Solution #1: METIS
• G. Karypis and V. Kumar. METIS 4.0: 

Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998.

• Web site
• code (v5.1.0)
• publications

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://glaros.dtc.umn.edu/gkhome/metis/metis/publications


CMU SCS

ICDM 2023 Faloutsos, Fidalgo, Cazzolato P2-80

Solutions #2,3…
• Fiedler vector (2nd singular vector of Laplacian).
• Modularity: Community structure in social and biological 

networks M. Girvan and M. E. J. Newman, PNAS June 11, 
2002. 99 (12) 7821-7826; 
https://doi.org/10.1073/pnas.122653799 

• Co-clustering: [Dhillon+, KDD’03]
• Clustering on the A2 (square of adjacency matrix) 

[Zhou, Woodruff, PODS’04]
• Minimum cut / maximum flow [Flake+, KDD’00]
• ….

SVD!

https://doi.org/10.1073/pnas.122653799
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A word of caution

• BUT: often, there are no good cuts:

A,B

A,B
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08]
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A word of caution

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08]

? ?

D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch:  
NetMine: New Mining Tools for Large Graphs, in SDM 2004 Workshop



Short answer

• METIS [Karypis, Kumar]
• (but: maybe NO good cuts exist!)
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BREAK for questions



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• Outliers
• Lockstep behavior

• …
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Problem
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Given: Find:
1) Outliers
2) Lock-step



Solution
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Given: Find:
1) Outliers
2) Lock-step

OddBall

SVD



1. Outliers
• Which node(s) are strange?

– Q: How to start?
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1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A1: egonet; and extract node features
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Ego-net Patterns: Which is 
strange?

92ICDM 2023 Faloutsos, Fidalgo, CazzolatoOddball: Spotting anomalies in weighted graphs, Leman 
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010



1. Outliers
• Which node(s) are strange?

– Q: How to start?
– A: egonet; and extract node features
– Q’: which features?
– A’: ART! Infinite! Pick a few, e.g.:
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KDD2020 ADS Panel: In ML 

‘feature engineering is the hardest part’



§ Ni: number of neighbors (degree) of ego i
§ Ei: number of edges in egonet i

§ Wi: total weight of egonet i
§ λw,i: principal eigenvalue of the weighted     

   adjacency matrix of egonet i

94

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Ego-net Patterns 
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Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Ei ∝ Ni
α

1 ≤ α ≤ 2
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Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010
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Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos

PAKDD 2010

Pattern: Ego-net Power Law Density

Ei ∝ Ni
α

1 ≤ α ≤ 2

ICDM 2023 Faloutsos, Fidalgo, CazzolatoOddball: Spotting anomalies in weighted graphs, Leman 
Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

Enron CEO



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• Outliers
• Lockstep behavior

• …
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Problem
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Given: Find:
1) Outliers
2) Lock-step



2. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans
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idols



2. How to find ‘suspicious’ 
groups?

• ‘blocks’ are normal, right?

fans
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idols
A,B

A,B



Except that:
• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]
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fans

idols



Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
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Except that:
• ‘blocks’ are usually suspicious
• ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
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Crush intro to SVD
• Recall: (SVD) matrix factorization: finds 

blocks
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N 
fans

M
idols

‘music lovers’
‘singers’

‘sports lovers’
‘athletes’

‘citizens’
‘politicians’

~ + +

Reminder (from HITS)



Case study#1: Tencent Weibo

Meng Jiang, Peng Cui, Shiqiang Yang, Alex Beutel, Christos 
Faloutsos – Inferring Strange Behavior from Connectivity 
Patterns in Social Networks, PAKDD 2014.



Dataset

• Tencent Weibo
• 117 million nodes (with profile and UGC

data)
• 3.33 billion directed edges

Faloutsos, Fidalgo, Cazzolato 106ICDM 2023



Real Data

“Rays” “Block”

Faloutsos, Fidalgo, Cazzolato 107ICDM 2023

‘blocks’ create ‘spokes’

u0 u1

v0 v1



Real Data
• Spikes on the out-degree distribution

´

Faloutsos, Fidalgo, Cazzolato 108ICDM 2023



ICDM 2023 Faloutsos, Fidalgo, Cazzolato 109

BREAK for questions



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised

– Node importance
– Link prediction
– Community detection
– Anomaly detection

• 3. Static Graphs – semi-supervised
• …
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Problem
• What color, for the rest?

– Given homophily (/heterophily etc)?
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Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip


Background

Prof. Danai Koutra
U. Michigan
& Amazon scholar
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Belief  Propagation
• Iterative message-based method

1st 
round

2nd 
round

...
until 
stop 

criterion 
fulfilled

• “Propagation matrix”:
² Homophily

0.9 0.1
0.1 0.9

PL

AI

class of
sender

class of receiver

[Pearl ‘82][Yedidia+ ’02] … [Gonzalez+ ‘09][Chechetka+ ‘10]
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Belief	Propagation

[Yedidia+ ’02]



Background
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Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised
• 3. Static Graphs – semi-supervised

– Basics
– Fast, linear approximation (FaBP)
– Later: zooBP
– Case studies

• …
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Unifying	Guilt-by-Association	Approaches:	
Theorems	and	Fast	Algorithms

Danai Koutra
U Kang 

Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece



BP  vs.  Linearized BP

BP is approximated by
Linearized	BP

0  1  0
1  0  1
0  1  0

   ?
0

-10-2
  10-
2

1
     1 

        1
d1

    d2 
      d3

linearnon-linear

Our proposal:Original [Yedidia+]:

Faloutsos, Fidalgo, Cazzolato 119ICDM 2023

DETAILS

• Closed-form formula?
• Convergence?

Belief	Propagation
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Linearized	BP
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Our proposal:Original [Yedidia+]:
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DETAILS

• Closed-form formula?
• Convergence?



Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised
• 3. Static Graphs – semi-supervised

– Basics
– Fast, linear approximation (FaBP)
– Later: zooBP
– Case studies

• …
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?



Problem: anomalies in ratings 
• Given a heterogeneous 

graph on users, 
products, sellers and 
positive/negative ratings 
with “seed labels”

• Find the top k most 
anomalous users, 
products and sellers

Faloutsos, Fidalgo, Cazzolato 122ICDM 2023

+

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017
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Problem: anomalies in ratings
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DETAILS
+

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017



ZooBP: features
Fast; convergence 
guarantees.

Near-perfect accuracy linear in graph size

ideal

600x (matlab)
3x (C++)
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Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017



ZooBP: code etc

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, 
Disha Makhija, Mohit Kumar, “ZooBP: Belief Propagation for 
Heterogeneous Networks”, VLDB 2017

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip


Bird’s eye view

• 1. Introduction – motivation; Types of fraud
• 2. Static Graphs – un-supervised
• 3. Static Graphs – semi-supervised

– Basics
– Fast, linear approximation (FaBP)
– Later: zooBP
– Case studies

• …
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Other ‘success stories’?
• Accounting fraud
• Malware detection
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Network Effect Tools: SNARE
• Some accounts are sort-of-suspicious – how to combine weak 

signals?
Before

Faloutsos, Fidalgo, Cazzolato 129ICDM 2023

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. 
Steier, Christos Faloutsos: SNARE: a link analytic system for 
graph labeling and risk detection. KDD 2009: 1265-1274



Network Effect Tools: SNARE
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Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. 
Steier, Christos Faloutsos: SNARE: a link analytic system for 
graph labeling and risk detection. KDD 2009: 1265-1274



Polo Chau
Machine Learning Dept

Carey Nachenberg
Vice President & Fellow

Jeffrey Wilhelm
Principal Software Engineer

Adam Wright
Software Engineer

Prof. Christos Faloutsos
Computer Science Dept

Polonium: Tera-Scale Graph Mining and 
Inference for Malware Detection
SDM 2011, Mesa, Arizona



Polonium: Tera-Scale Graph Mining and 
Inference for Malware Detection
SDM 2011, Mesa, Arizona

…

…

+2% TPR
(same FPR)



Short answer:
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip

+

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip
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BREAK for questions



Bird’s eye view
• 1. Introduction - types of fraud
• 2. Static Graphs – un-supervised
• 3. Static Graphs – semi-supervised
• 4. Time evolving graphs
• 5. Visualization - practitioner's guide’s 

guide
– Node features
– Visualization tools

• 6. Conclusions
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Time-evolving networks
who – buys – what

Faloutsos, Fidalgo, Cazzolato 136ICDM 2023

items

us
er

s
u
1
..
.u

n

<latexit sha1_base64="OCbcNVdA2D/ez+YPv+SUDTJRu1g=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoO6KblxWsA9ohyGTZtrQTGZM7hRK6Xe4caGIWz/GnX9j2s5CWw8EDufcw705YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3s381ohrIxL1iOOU+zHtKxEJRtFKfhZ4pNtL0JAsUEG54lbdOcgq8XJSgRz1oPxlsyyLuUImqTEdz03Rn1CNgkk+LXUzw1PKhrTPO5YqGnPjT+ZHT8mZVXokSrR9Cslc/Z2Y0NiYcRzayZjiwCx7M/E/r5NhdO1PhEoz5IotFkWZJJiQWQOkJzRnKMeWUKaFvZWwAdWUoe2pZEvwlr+8SpoXVe+yevNwWand5nUU4QRO4Rw8uIIa3EMdGsDgCZ7hFd6ckfPivDsfi9GCk2eO4Q+czx8IcpGl</latexit>

i1 . . . im

<latexit sha1_base64="mk+Uj7kJy4RnKG3BJZCAR6X2RFQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoO6KblxWsA9ohyGTZtrQZGZM7hRK6Xe4caGIWz/GnX9j2s5CWw8EDufcw705YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGSxHzBgqUvJ1qTlUoeSsc3s381ohrI5L4Eccp9xXtxyISjKKVfBF4pNtL0BARqKBccavuHGSVeDmpQI56UP6yWZYpHiOT1JiO56boT6hGwSSflrqZ4SllQ9rnHUtjqrjxJ/Ojp+TMKj0SJdq+GMlc/Z2YUGXMWIV2UlEcmGVvJv7ndTKMrv2JiNMMecwWi6JMEkzIrAHSE5ozlGNLKNPC3krYgGrK0PZUsiV4y19eJc2LqndZvXm4rNRu8zqKcAKncA4eXEEN7qEODWDwBM/wCm/OyHlx3p2PxWjByTPH8AfO5w/h15GM</latexit>

…

…

who – buys – what - when

+

items
us

er
s

tim
e

t 1
. .
. t k

<latexit sha1_base64="pur6gLX+o4eTUVhgQkdv/87Mkns=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoO6KblxWsA9ohyGTZtrQTGZM7hRK6Xe4caGIWz/GnX9j2s5CWw8EDufcw705YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3s381ohrIxL1iOOU+zHtKxEJRtFKPgYe6fYSNASDYVCuuFV3DrJKvJxUIEc9KH/ZLMtirpBJakzHc1P0J1SjYJJPS93M8JSyIe3zjqWKxtz4k/nRU3JmlR6JEm2fQjJXfycmNDZmHId2MqY4MMveTPzP62QYXfsTodIMuWKLRVEmCSZk1gDpCc0ZyrEllGlhbyVsQDVlaHsq2RK85S+vkuZF1bus3jxcVmq3eR1FOIFTOAcPrqAG91CHBjB4gmd4hTdn5Lw4787HYrTg5Jlj+APn8wcA0JGg</latexit>

u
1
..
.u

n

<latexit sha1_base64="OCbcNVdA2D/ez+YPv+SUDTJRu1g=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoO6KblxWsA9ohyGTZtrQTGZM7hRK6Xe4caGIWz/GnX9j2s5CWw8EDufcw705YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3s381ohrIxL1iOOU+zHtKxEJRtFKfhZ4pNtL0JAsUEG54lbdOcgq8XJSgRz1oPxlsyyLuUImqTEdz03Rn1CNgkk+LXUzw1PKhrTPO5YqGnPjT+ZHT8mZVXokSrR9Cslc/Z2Y0NiYcRzayZjiwCx7M/E/r5NhdO1PhEoz5IotFkWZJJiQWQOkJzRnKMeWUKaFvZWwAdWUoe2pZEvwlr+8SpoXVe+yevNwWand5nUU4QRO4Rw8uIIa3EMdGsDgCZ7hFd6ckfPivDsfi9GCk2eO4Q+czx8IcpGl</latexit>

i1 . . . im

<latexit sha1_base64="mk+Uj7kJy4RnKG3BJZCAR6X2RFQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoO6KblxWsA9ohyGTZtrQZGZM7hRK6Xe4caGIWz/GnX9j2s5CWw8EDufcw705YSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGSxHzBgqUvJ1qTlUoeSsc3s381ohrI5L4Eccp9xXtxyISjKKVfBF4pNtL0BARqKBccavuHGSVeDmpQI56UP6yWZYpHiOT1JiO56boT6hGwSSflrqZ4SllQ9rnHUtjqrjxJ/Ojp+TMKj0SJdq+GMlc/Z2YUGXMWIV2UlEcmGVvJv7ndTKMrv2JiNMMecwWi6JMEkzIrAHSE5ozlGNLKNPC3krYgGrK0PZUsiV4y19eJc2LqndZvXm4rNRu8zqKcAKncA4eXEEN7qEODWDwBM/wCm/OyHlx3p2PxWjByTPH8AfO5w/h15GM</latexit>

…

…

3am, 4/1

3am, 4/1

10pm, 4/3
11pm, 4/3



Problem
• Patterns/anomalies in time-evolving 

graphs?
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Short answer:
• Patterns/anomalies in time-evolving 

graphs?
• PARAFAC tensor decomposition
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Tensor examples

• Q: What is a tensor?
• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

KDD’19

ICDM 2023 Faloutsos, Fidalgo, Cazzolato
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Tensor examples

• Q: What is a tensor?
• A: N-D generalization of matrix:

13 11 22 55 ...
5 4 6 7 ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

data mining classif. tree ...
John
Peter
Mary
Nick

...

KDD’20
KDD’21

KDD’19
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Tensor factorization
• Recall: (SVD) matrix factorization: finds blocks
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�u1 �ui

N 
users

M
products

‘meat-eaters’
‘steaks’

‘vegetarians’
‘plants’

‘kids’
‘cookies’

~ + +

Reminder (from SVD)



Tensor factorization

One Approach: PARAFAC decomposition

142

subject

object

ve
rb

politicians artists athletes

= + +
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Tensor factorization

One Approach: PARAFAC decomposition

143

subject

object

ve
rb

politicians artists athletes

= + +
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Example Applications
• TA1: Phonecall 
• TA2: Network traffic
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• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks
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TA1: Anomaly detection in time-
evolving graphs

[PAKDD] “Com2: Fast Automatic Discovery of Temporal (Comet) 
Communities”, Miguel Araujo, Spiros Papadimitriou, Stephan 
Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram 
Swami,Evangelos Papalexakis, Danai Koutra.



1 caller 5 receivers 4 days of activity
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• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

TA1: Anomaly detection in time-
evolving graphs

~200 calls to EACH receiver on EACH day!



1 caller 5 receivers 4 days of activity
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• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

TA1: Anomaly detection in time-
evolving graphs

~200 calls to EACH receiver on EACH day!

Godfather?



Example Applications
• TA1: Phonecall 
• TA2: Network traffic

ICDM 2023 Faloutsos, Fidalgo, Cazzolato 148



LBNL Network Tra�c This dataset consists of (source, destination, port #)
triplets, where each value of the corresponding tensor is the number of packets
sent. The snapshot of the dataset we used, formed a 65170 � 65170 � 65327
tensor of 27269 non-zeros. We ran Algorithm 3 using s = 5 and r = 10 and we
were able to identify what appears to be a port-scanning attack: The component
shown in Fig. 9 contains only one source address (addr. 29571), contacting one
destination address (addr. 30483) using a wide range of near-consecutive ports
(while sending the same amount of packets to each port), a behaviour which
should certainly raise a flag to the network administrator, indicating a possible
port-scanning attack.
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Fig. 9. Anomaly on the Lbnl data: We have one source address (addr. 29571), con-
tacting one destination address (addr. 30483) using a wide range of near-consecutive
ports, possibly indicating a port scanning attack.

Facebook Wall posts This dataset 5 first appeared in [25]; the specific part
of the dataset we used consists of triplets of the form (Wall owner, Poster,
day), where the Poster created a post on the Wall owner’s Wall on the specified
timestamp. By choosing daily granularity, we formed a 63891 � 63890 � 1847
tensor, comprised of 737778 non-zero entries; subsequently, we ran Algorithm 3
using s = 100 and r = 10. In Figure 10 we present our most surprising findings:
On the left subfigure, we demonstrate what appears to be the Wall owner’s
birthday, since many posters posted on a single day on this person’s Wall; this
event may well be characterized as an ”anomaly”. On the right subfigure, we
demonstrate what ”normal” Facebook activity looks like.

NELL This dataset consists of triplets of the form (noun-phrase, noun-phrase,
context). which form a tensor with assorted modes of size 14545�14545�28818
and 76879419 non-zeros, and as values the number of occurrences of each triplet.
The context phrase may be just a verb or a whole sentence. After computing the
Parafac decomposition of the tensor using ParCube with s = 500, and r = 10
repetitions, we computed the noun-phrase similarity matrix AAT + BBT and

5 Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.
html

TA2: Anomaly detection in 
network traffic

Faloutsos, Fidalgo, Cazzolato 149

1 Source 1 Destination

ICDM 2023

[ECML/PKDD] “ParCube: Sparse Parallelizable Tensor 
Decompositions”, Evangelos E. Papalexakis, Christos Faloutsos, 
Nikos Sidiropoulos
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event may well be characterized as an ”anomaly”. On the right subfigure, we
demonstrate what ”normal” Facebook activity looks like.
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context). which form a tensor with assorted modes of size 14545�14545�28818
and 76879419 non-zeros, and as values the number of occurrences of each triplet.
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Parafac decomposition of the tensor using ParCube with s = 500, and r = 10
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[ECML/PKDD] “ParCube: Sparse Parallelizable Tensor 
Decompositions”, Evangelos E. Papalexakis, Christos Faloutsos, 
Nikos Sidiropoulos
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Short answer:
• Patterns/anomalies in time-evolving 

graphs?
• PARAFAC tensor decomposition
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Software Tools

– Networkx (python) – static graphs

– TensorLy: Tensor Learning in Python
http://tensorly.org/stable/index.html 

– Tensor Toolbox for MATLAB 
http://www.tensortoolbox.org/ 
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http://tensorly.org/stable/index.html
http://www.tensortoolbox.org/


Static Graphs - More references
Danai Koutra and Christos Faloutsos, 
Individual and Collective Graph Mining: 
Principles, Algorithms, and Applications 
October 2017, Morgan Claypool
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https://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
https://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006


Static Graphs - More references
Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies 
Oct. 2012, Morgan Claypool.
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http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006


Static Graphs - More references
Anomaly detection
• Leman Akoglu, Hanghang Tong, & Danai 

Koutra, Graph based anomaly detection 
and description: a survey Data Mining and 
Knowledge Discovery (2015) 29: 626.

• Arxiv version: 
https://arxiv.org/abs/1404.4679
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https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/s10618-014-0365-y
https://arxiv.org/abs/1404.4679


Tensors - References
• Tamara G. Kolda and Brett W. Bader 

Tensor Decompositions and Applications
SIAM Rev., 51(3), pp 455–500, 2009

• Nicholas D. Sidiropoulos, Lieven De Lathauwer,, 
Xiao Fu,, Kejun Huang, Evangelos E. Papalexakis, 
and Christos Faloutsos 
Tensor Decomposition for Signal Processing and 
Machine Learning  
IEEE TSP, 65(13), July 1, 2017
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https://epubs.siam.org/doi/pdf/10.1137/07070111X
http://www.cs.ucr.edu/~epapalex/papers/tsp17-tensors.pdf
http://www.cs.ucr.edu/~epapalex/papers/tsp17-tensors.pdf


Thanks to
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Danai Koutra
U. Michigan

Dhivya Eswaran
MSR

Vagelis
Papalexakis
UCR



Bird’s eye view

• 1. Introduction - Types of fraud
• 2. Static graphs – un-supervised
• 3. Static graphs – semi-supervised
• 4. Time evolving graphs
• 5. Visualization - practitioner’s guide

– Node features
– Visualization tools

• 6. Conclusions
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