Temporal Graph Mining for Fraud Detection Part II

Christos Faloutsos CMU

Pedro Fidalgo Mobileum

Mirela Cazzolato USP

Bird's eye view

- Part\#1: Introduction - types of fraud
- Part\#2: Graphs Mining - patterns and tools
- Part\#3: Visualization - conclusions

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static graphs - un-supervised
- 3. Static graphs - semi-supervised
- 4. Time evolving graphs

- 5. Visualization - practitioner's guide
- 6. Conclusions

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- 3. Static graphs - semi-supervised
-

'Recipe' Structure:

- Problem definition
- Short answer/solution
- LONG answer - details
- Conclusion/short-answer

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?
- Q2: How close is node ' A ' to node ' B '?

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important? - PageRank (PR = RWR), HITS (SVD)
- Q2: How close is node 'A' to node 'B'?
- Personalized P.R. (PPR)

\checkmark Block detection
\checkmark Dimensionality reduction
\checkmark Embedding (linear)

- SVD is a special case of 'deep neural net'

SVD properties

\checkmark Hidden/latent variable detection \checkmark Compute node importano \checkmark Block detection $S V D$!
\checkmark Dimen \checkmark Em Matrix?

- S C Special case of 'deep neural net'

$$
\square\left|\left.\right|_{\mathrm{U}_{0}} \quad \mathrm{U}_{1}\right.
$$

Bird's eye view

- 1. Introduction - Motivation
- 2. Static Graphs - un-supervised
- node importance
- PageRank and Personalized PR
- HITS

- SVD
- . .

PageRank

- Brin, Sergey and Lawrence Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.
-Page, Brin, Motwani, and Winograd (1999). The PageRank citation ranking: Bringing order to the web. Technical Report

Problem: PageRank

Given a directed graph, find its most interesting/central node

A node is important,
if its parents are important (recursive, but OK!)

Problem: PageRank - solution

Given a directed graph, find its most interesting/central node
Proposed solution: Random walk; spot most 'popular' node (-> steady state prob. (ssp))

A node high ssp,
if its parents have high ssp
(recursive, but OK!)

(Simplified) PageRank algorititu

- Let \mathbf{A} be the adjacency matrix;
- let \mathbf{B} be the transition matrix: transpose, column-normalized - then

Carnegie Mellon
 N: CSP

(Simplified) PageRank algoritine

- $\mathbf{B} \mathbf{p}=\mathbf{p}$

Definitions

A Adjacency matrix (from-to)
D \quad Degree matrix $=(\operatorname{diag}(\mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dn}))$
B Transition matrix: to-from, column normalized

$$
\mathbf{B}=\mathbf{A}^{\mathrm{T}} \mathbf{D}^{-1}
$$

(Simplified) PageRank algorintills

- $\mathbf{B} \mathbf{p}=1$ * \mathbf{p}
- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue $(=1$, since the matrix is column-normalized)
- Why does such a p exist?
$-\mathbf{p}$ exists if \mathbf{B} is nxn, nonnegative, irreducible [Perron-Frobenius theorem]

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

PageRank = PR
 = Random Walk with Restarts = RWR
 = Random surfer

Full Algorithm

- With probability $1-c$, fly-out to a random node
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \mathbf{1}=\mathbf{8} \\
& \mathbf{p}=(1-\mathrm{c}) / \mathrm{n}[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \mathbf{1}
\end{aligned}
$$

Full Algorithm

- With probability $1-c$, fly-out to a random node
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \mathbf{1}=> \\
& \mathbf{p}=(1-\mathrm{c}) / \mathrm{n}[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \mathbf{1}
\end{aligned}
$$

Notice:

- pageRank ~in-degree
- (and HITS, also: ~ in-degree)

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- 3. Static Graphs - semi-supervised
-

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?
\longrightarrow • Q2: How close is node ' A ' to node ' B '?

Personalized P.R.

- Taher H. Haveliwala. 2002. Topic-sensitive PageRank. (WWW '02). 517-526. http://dx.doi.org/10.1145/511446.511513

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- (or: if I like page/node ' 2 ', what else would you recommend?)

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- (or: if I like page/node '2', what else would you recommend?)

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- (or: if I like page/node ' 2 ', what else would you recommend?)

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- (or: if I like page/node ' 2 ', what else would you recommend?)

High score (A -> B) if

- Many
- Short
- Heavy
paths A->B

Extension: Personalized P.R

- With probability $1-c$, fly-out to random node(s)
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \boldsymbol{\perp} \xrightarrow{e} \\
& \mathbf{p}=(1-\mathrm{c}) / \mathscr{X}[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \boldsymbol{X}
\end{aligned} \vec{e}
$$

$$
\left[\begin{array}{c}
\boldsymbol{\theta} \\
1 \\
\cdots \\
\boldsymbol{\theta}
\end{array}\right]
$$

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- A: compute Personalized P.R. of '4', restarting from '2'

Extension: Personalized P.R.

- How close is '4' to ' 2 '?
- A: compute Personalized P.R. of '4', restarting from ' 2 ' - Related to
- 'escape' probability
- 'round trip' probability
——..

Applications of node proximity

- Recommendation
- Link prediction

- 'Center Piece Subgraphs’
- ...

Fast Algorithms for Querying and Mining Large Graphs Hanghang Tong, PhD dissertation, CMU, 2009. TR: CMU-ML-09-112.

Bird's eye view

- 1. Introduction - Motivation
- 2. Static Graphs - un-supervised
- node importance
- PageRank and Personalized PR
- HITS

- SVD (Singular Value Decomposition)
- Community detection

Kleinberg's algo (HITS)

Kleinberg, Jon (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

Recall: problem dfn

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important?

Why not just PageRank?

1. HITS differentiate between "hubs" and "authorities"
2. HITS can help to find the largest community
3. (SVD: powerful tool; extensible to 3-modes)

Problem: PageRank

Given a directed graph, find its most interesting/central node

A node is important,
if its parents are important
(recursive, but OK!)

HITS

 Problem: PagRRankGiven a directed graph, find its most interesting/central node

A node is important, if its parents are important (recursive, but OK!)
AND: A node is "wise" if its children are important

Kleinberg's algorithm

- Step 0: find nodes with query word(s)
- Step 1: expand by one move forward and backward

Kleinberg's algorithm

- on the resulting graph, give high score (= 'authorities') to nodes that many "'wise'’ nodes point to
- give high wisdom score ('hubs') to nodes that point to good 'authorities'

Kleinberg's algorithm

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

that is
$a_{i}=\operatorname{Sum}\left(h_{j}\right) \quad$ over all j that (j, i) edge exists
or

$$
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
$$

I=

Kleinberg's algorithm

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

that is
$a_{i}=\operatorname{Sum}\left(h_{j}\right) \quad$ over all j that (j,i) edge exists
or

$$
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
$$

$$
\mathrm{I}=\square \mathrm{I}
$$

Kleinberg's algorithm

symmetrically, for the 'hubness':

$$
h_{i}=a_{n}+a_{p}+a_{q}
$$

that is

$$
h_{i}=\operatorname{Sum}\left(q_{j}\right) \quad \text { over all } j \text { that }
$$ (i, j) edge exists

or

$$
\mathbf{h}=\mathbf{A} \mathbf{a}
$$

$$
\mathrm{I}=\square \mathrm{I}
$$

Kleinberg's algorithm

symmetrically, for the 'hubness':

$$
h_{i}=a_{n}+a_{p}+a_{q}
$$

that is
$h_{i}=\operatorname{Sum}\left(q_{j}\right) \quad$ over all j that (i, j) edge exists
or

$$
\mathbf{h}=\mathbf{A} \mathbf{a}
$$

$$
\mathrm{I}=\square \mathrm{I}
$$

Kleinberg's algorithm

In conclusion, we want vectors \mathbf{h} and a such that:

$$
\begin{gathered}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{gathered}
$$

Kleinberg's algorithm

In conclusion, we want vectors h and a such that:

$$
\begin{gathered}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{gathered}
$$

Kleinberg's algorithm

In conclusion, we want vectors h and a such that:

$$
\begin{gathered}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{gathered}
$$

밍

Kleinberg's algorithm

In conclusion, we want vectors h and a such

 that:

Kleinberg's algorithm

In short, the solutions to

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

are the left- and right- singular-vectors of the adjacency matrix \mathbf{A}.
Starting from random a' and iterating, we'll
eventually converge
... to the vector of strongest singular value.

Kleinberg's algorithm - results

Eg., for the query 'java':
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com ("the java developer")

BREAK for questions

Bird's eye view

- 1. Introduction - Motivation
- 2. Static Graphs - un-supervised - node importance
- PageRank and Personalized PR
- HITS

- SVD (Singular Value Decomposition)

SVD properties

- Hidden/latent variable detection
- Compute node importance (HITS)
- Block detection
- Dimensionality reduction
- Embedding

$$
\begin{aligned}
& h=A a \\
& a=A^{\top} h
\end{aligned}
$$

Crush intro to SVD

- (SVD) matrix factorization: finds blocks
'music lovers' 'sports lovers' 'citizens'

Crush intro to SVD

- (SVD) matrix factorization: finds blocks A) Even if shuffled!
'music lovers' 'sports lovers' 'citizens'
 ‘singers' 'athletes' 'politicians' $\mathbf{a}^{\wedge} \mathbf{a}^{\circ} \overrightarrow{v_{1}}$

.

Faloutsos, Fidalgo, Cazzolato

Crush intro to SVD

- (SVD) matrix factorization: finds blocks B) Even if 'salt+pepper' noise
'music lovers' 'sports lovers' 'citizens'
 'singers' 'athletes' 'politicians'

Crush intro to SVD

- Basis for anomaly detection - see later
- Basis for tensor/PARAFAC - see later
'music lovers' 'sports lovers’ 'citizens'
 'singers' 'athletes' 'politicians'

SVD properties

\checkmark Hidden/latent variable detection

- Compute node importance (HITS)
- Block detection
- Dimensionality reduction
- Embedding

Crush intro to SVD

- (SVD) matrix factorization: finds blocks HITS: first singular vector, ie, fixates on largest group

SVD properties

\checkmark Hidden/latent variable detection
\checkmark Compute node importance (HITS)

- Block detection
- Dimensionality reduction
- Embedding

Crush intro to SVD

- (SVD) matrix factorization: finds blocks
'music lovers' 'sports lovers' 'citizens'
 'singers' 'athletes' 'politicians'

SVD properties

\checkmark Hidden/latent variable detection
\checkmark Compute node importance (HITS)
\checkmark Block detection

- Dimensionality reduction
- Embedding

SVD - intuition

SVD: gives best axis to project

first singular vector

- minimum RMS error \#retweets for Byonce

SVD properties

\checkmark Hidden/latent variable detection
\checkmark Compute node importance (HITS)
\checkmark Block detection
\checkmark Dimensionality reduction / projection

- Embedding

Crush intro to SVD

－SVD compression is a linear autoencoder

row i（M dim）

Independent Component Analysis，Aapo Hyvarinen，Erkki Oja，and Juha Karhunen（Wiley，2001）－sec 6．2．4，p． 136.

SVD properties

\checkmark Hidden/latent variable detection
\checkmark Compute node importance (HITS)
\checkmark Block detection
\checkmark Dimensionality reduction
\checkmark Embedding (linear)

- SVD is a special case of 'deep neural net'
ETV

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q1: Which node is the most important? - PageRank (PR = RWR), HITS
- Q2: How close is node ' A ' to node ' B '?
- Personalized P.R.

SVD properties

\checkmark Hidden/latent variable detection
\checkmark Compute node importance (HITS)
\checkmark Block detection
\checkmark Dimensionality reduction
\checkmark Embedding (linear)

- SVD is a special case of 'deep neural net'

SVD properties

\checkmark Hidden/latent variable detection \checkmark Compute node importano \checkmark Block detection $S V D$!
\checkmark Dimen \checkmark Em Matrix?

- S C Special case of 'deep neural net'

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- 3. Static Graphs - semi-supervised
-

Problem

- Given a graph, and k
- Break it into k (disjoint) communities

Short answer

- METIS [Karypis, Kumar]

Solution\#1: METIS

- Arguably, the best algorithm
- Main idea:
- coarsen the graph;
- partition;
- un-coarsen

Solution \#1: METIS

- G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system. TR, Dept. of CS, Univ. of Minnesota, 1998.
- Web site
- code (v5.1.0)
- publications

Solutions \#23...

- Fiedler vector ($2^{\text {nd }}$ singular vector of Laplacian).
- Modularity: Community structure in social and biological networks M. Girvan and M. E. J. Newman, PNAS June 11, 2002. 99 (12) 7821-7826; https://doi.org/10.1073/pnas. 122653799
- Co-clustering: [Dhillon+, KDD'03]
- Clustering on the \mathbf{A}^{2} (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD’00]

A word of caution

- BUT: often, there are no good cuts:

A word of caution

- BUT: often, there are no good cuts:

A word of caution

- Maybe there are no good cuts: `jellyfish’" shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+'04], [Leskovec+,'08]

A word of caution

- Maybe there are no good cuts: "jellyfish" shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+,'04], [Leskovec+,'08]

D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch: NetMine: New Mining Tools for Large Graphs, in SDM 2004 Workshop

Short answer

- METIS [Karypis, Kumar]
- (but: maybe NO good cuts exist!)

BREAK for questions

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- Outliers
- Lockstep behavior

Problem

Given:

Find: 1) Outliers 2) Lock-step

$$
1
$$

Solution

Given:

Find:

1) Outliers 2) Lock-step $S \sqrt{D}$

1. Outliers

- Which node(s) are strange?
- Q: How to start?

1. Outliers

- Which node(s) are strange?
- Q: How to start?
- A1: egonet; and extract node features

Ego-net Patterns: Which is strange?

Oddball: Spotting anomalies in weighted graphs, Leman Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

1. Outliers

- Which node(s) are strange?
- Q: How to start?
- A: egonet; and extract node features
- Q': which features?
- A': ART! Infinite! Pick a few, e.g.:

KDD2020 ADS Panel: In ML
'feature engineering is the hardest part'

Ego-net Patterns

- N_{i} : number of neighbors (degree) of ego i
- E_{i} : number of edges in egonet i

$$
W_{i} \text { : total weight of egonet } i
$$

- $\lambda_{w, i}$: principal eigenvalue of the weighted adjacency matrix of egonet i

Oddloall: Spotting anomalies in weighted graphs, Leman Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

CarnegieMellon
 \ldots © TSP

Pattern: Ego-net Power Law Density

$$
\begin{aligned}
& E_{i} \propto N_{i}^{\alpha} \\
& 1 \leq \alpha \leq 2
\end{aligned}
$$

Oddball: Spotting anomalies in weighted graphs, Leman Akoglu, Mary McGlohon, Christos Faloutsos, PAKDD 2010

CarnegieMellon
 \ldots © TSP

Pattern: Ego-net Power Law Density

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- Outliers
- Lockstep behavior

Problem

Given:

Find: 1) Outliers 2) Lock-step
P

- 'blocks' are normal, right?

2. How to find 'suspicious' groups?

- 'blocks' are normal, right?

Except that:

- 'blocks' are normal, Ash?

- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Except that:

- 'blocks' are usually suspicious

- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily?

Except that:

- 'blocks’ are usually suspicious

- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily? A: Silver bullet: SVD!
 blocks

'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians'

Case study\#1: Tencent Weibo

Meng Jiang, Peng Cui, Shiqiang Yang, Alex Beutel, Christos Faloutsos - Inferring Strange Behavior from Connectivity Patterns in Social Networks, PAKDD 2014.

Dataset

- Tencent Weibo
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

'blocks' create 'spokes'

Real Data Pe

- Spikes on the out-degree distribution

follower

BREAK for questions

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- Node importance
- Link prediction
- Community detection
- Anomaly detection
- 3. Static Graphs - semi-supervised
-

Problem

- What color, for the rest?
- Given homophily (/heterophily etc)?

Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')
:

Belief Propagation

- Iterative message-based method
- "Propagation matrix":
\checkmark Homophily class of receiver

[Pearl '82][Yedidia+ '02] ... [Gonzalez+ '09][Chechetka+ '10]

[Yedidia+ '02]

Belief Propagation

$$
\underbrace{m_{i}\left(x_{i}\right)} \cdot \phi_{i}\left(x_{j}\right) \cdot \prod_{x_{i}}\left(x_{i}\right) \cdot \psi_{i j}\left(x_{i}, x_{j}\right) \cdot \prod_{n \in N(i) \backslash j} m_{n i}\left(x_{i}\right)
$$

Background

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- 3. Static Graphs - semi-supervised
- Basics
- Fast, linear approximation (FaBP)
- Later: zooBP
- Case studies

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece

Original [Yedidia+]:

Belief Propagation

$$
\begin{aligned}
& m_{i j}\left(x_{j}\right) \sum_{x_{i}} \phi_{i}\left(x_{i}\right) \cdot \psi_{i j}\left(x_{i}, x_{j}\right) \cdot \prod_{n \in \mathbb{N}(i))_{i j}} m_{n^{\prime}}\left(x_{i}\right) \\
& \underbrace{}_{b_{i}\left(x_{i}\right)} \underbrace{}_{\bullet \cdot}{\dot{\phi} \cdot\left(x_{i}\right)} \prod_{j \in N(i)} m_{i j}\left(x_{i}\right)
\end{aligned}
$$

† non-linear

- Closed-form formula?
- Convergence?

VS. Linearized BP didia+]: \quad Our proposal:

Belief Propagation

$$
m_{i}\left(x_{j}<\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \cdot \psi_{i j}\left(x_{i}, x_{j}\right) \cdot \prod_{n \in \mathbb{N}(i))_{i j}} m_{i j}\left(x_{i}\right)\right.
$$

$$
b_{i}\left(x_{i}\right) \cdot \phi_{i}\left(x_{i}\right) \cdot \prod_{j \in N(i)} m_{i j}\left(x_{i}\right)
$$

\uparrow non-linear

Original [Yedidia+]:

Linearized BP

BP is approximated by

$$
\left[\mathbf{I}+a \mathbf{D}-c^{\prime} \mathbf{A}\right] \mathbf{b}_{h}=\phi_{h}
$$

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- 3. Static Graphs - semi-supervised
- Basics
- Fast, linear approximation (FaBP)
- Later: zooBP
- Case studies

Problem: anomalies in ratings

- Given a heterogeneous
 graph on users, products, sellers and positive/negative ratings with "seed labels"
- Find the top k most anomalous users, products and sellers

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

Problem: anomalies in ratings

- Given a heterogeneous
 graph on users, products, sellers and positive/negative ratings with "seed labels"
- Find the top k most anomalous users, products and sellers

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

Problem: anomalies in ratings

Theorem 1 (ZooBP). If $\mathbf{b}, \mathbf{e}, \mathbf{P}, \mathbf{Q}$ are constructed as described above, the linear equation system approximating the final node beliefs given by $B P$ is:

$$
\begin{equation*}
\mathbf{b}=\mathbf{e}+(\mathbf{P}-\mathbf{Q}) \mathbf{b} \quad(\mathrm{ZooBP}) \tag{10}
\end{equation*}
$$

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

ZooBP: features

Fast; convergence guarantees.

Near-perfect accuracy

600x (matlab) $3 x(C++)$

linear in graph size

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

ZooBP: code etc

http://www.cs.cmu.edu/~deswaran/code/zoobp.zip

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar, "ZooBP: Belief Propagation for Heterogeneous Networks", VLDB 2017

Bird's eye view

- 1. Introduction - motivation; Types of fraud
- 2. Static Graphs - un-supervised
- 3. Static Graphs - semi-supervised
- Basics
- Fast, linear approximation (FaBP)
- Later: zooBP
- Case studies

Other 'success stories'?

- Accounting fraud
- Malware detection

Network Effect Tools: SNARE

- Some accounts are sort-of-suspicious - how to combine weak signals?

Before

PWC

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, Christos Faloutsos: SNARE: a link analytic system for graph labeling and risk detection. KDD 2009: 1265-1274

Network Effect Tools: SNARE

- Some accounts are sort-of-suspicious - how to combine weak signals?

Before

PWC

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, Christos Faloutsos: SNARE: a link analytic system for graph labeling and risk detection. KDD 2009: 1265-1274

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

SDM 2011, Mesa, Arizona

Polo Chau
Machine Learning Dept

Carey Nachenberg
Vice President \& Fellow

symantec.
Jeffrey Wilhelm
Principal Software Engineer

Symantec.
Adam Wright
Software Engineer

Prof. Christos Faloutsos
Computer Science Dept

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

SDM 2011, Mesa, Arizona

Short answer:

- What color, for the rest?
- A: Belief Propagation ('zooBP')
:i

BREAK for questions

Bird's eye view

- 1. Introduction - types of fraud
- 2. Static Graphs - un-supervised
- 3. Static Graphs - semi-supervised
- 4. Time evolving graphs
- 5. Visualization - practitioner's guide's guide
- Node features
- Visualization tools
- 6. Conclusions

Time－evolving networks

who－buys－what－when

Problem

- Patterns/anomalies in time-evolving graphs?

Short answer:

- Patterns/anomalies in time-evolving graphs?
- PARAFAC tensor decomposition

Tensor examples

- Q: What is a tensor?
- A: N-D generalization of matrix:

KDD' 19	data	mining	classif.	tree		
John	13	11	22	55	...	
Peter	5	4	6	7	..	
Mary	\ldots	
Nick	\ldots	\ldots	
	\ldots	\ldots	\ldots	
ICDM 2023	Faloutsos, Fidalgo, Cazzolato					139

Tensor examples

- Q: What is a tensor?
- A: N-D generalization of matrix:

- Recall: (SVD) matrix factorization: finds blocks

\vec{u}_{i}

\vec{u}_{1}

Tensor factorization

One Approach: PARAFAC decomposition

Tensor factorization

One Approach: PARAFAC decomposition

politicians
 artists
 athletes

Example Applications

\Rightarrow •TA1: Phonecall
 - TA2: Network traffic

TA1: Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
- European country, 4M clients, data over 2 weeks Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra.

TA1: Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
- European country, 4M clients, data over 2 weeks

5 receivers

4 days of activity

~200 calls to EACH receiver on EACH day!

TA1: Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
- European country, 4M clients, data over 2 weeks

5 receivers

4 days of activity

~200 calls to EACH receiver on EACH day!

Example Applications

- TA1: Phonecall
\Rightarrow •TA2: Network traffic

TA2: Anomaly detection in network traffic

[ECML/PKDD] "ParCube: Sparse Parallelizable Tensor Decompositions", Evangelos E. Papalexakis, Christos Faloutsos, Nikos Sidiropoulos

TA2: Anomaly detection in network traffic

[ECML/PKDD] "ParCube: Sparse Parallelizable Tensor Decompositions", Evangelos E. Papalexakis, Christos Faloutsos, Nikos Sidiropoulos

Short answer:

- Patterns/anomalies in time-evolving graphs?
- PARAFAC tensor decomposition

回 Software Tools

- Networkx (python) - static graphs
- TensorLy: Tensor Learning in Python http://tensorly.org/stable/index.html
- Tensor Toolbox for MATLAB http://www.tensortoolbox.org/

Static Graphs - More references

Danai Koutra and Christos Faloutsos,
 Individual and Collective Graph Mining: Principles, Algorithms, and Applications October 2017, Morgan Claypool

Static Graphs - More references

Deepayan Chakrabarti and Christos Faloutsos, Graph Mining: Laws, Tools, and Case Studies Oct. 2012, Morgan Claypool.

Static Graphs - More references

Anomaly detection

- Leman Akoglu, Hanghang Tong, \& Danai Koutra, Graph based anomaly detection and description: a survey Data Mining and Knowledge Discovery (2015) 29: 626.
- Arxiv version: https://arxiv.org/abs/1404.4679

Tensors - References

- Tamara G. Kolda and Brett W. Bader Tensor Decompositions and Applications SIAM Rev., 51(3), pp 455-500, 2009
- Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and Christos Faloutsos
Tensor Decomposition for Signal Processing and Machine Learning
IEEE TSP, 65(13), July 1, 2017

Thanks to

Danai Koutra

U. Michigan

Vagelis
Papalexakis
UCR

Dhivya Eswaran MSR

Bird's eye view

- 1. Introduction - Types of fraud
- 2. Static graphs - un-supervised
- 3. Static graphs - semi-supervised
- 4. Time evolving graphs
- 5. Visualization - practitioner's guide
- Node features
- Visualization tools
- 6. Conclusions

